
1

Reproducible performance evaluations
of different OpenStack deployments

with EnOS
Fog/Edge/Massively Distributed Clouds (FEMDC) SIG

Beyond the Clouds: The DISCOVERY initiative

Ronan-Alexandre Cherrueau, Dimitri Pertin, Anthony Simonet, Matthieu Simonin, Adrien Lebre

Dimitri Pertin

Researcher post-doc at Inria, involved in the Discovery initiative:

Build a fully decentralized Cloud manager
Towards the Deployment and Reconfiguration of Cloud Applications

on top of Massively Distributed infrastructures

Fog/Edge/Massively Distributed Clouds FEMDC SIG enthusiast

EnOS contributor (GitHub, documentation)

Who am I?

2

https://www.inria.fr/
https://beyondtheclouds.github.io/
https://wiki.openstack.org/wiki/Fog_Edge_Massively_Distributed_Clouds
https://github.com/BeyondTheClouds/enos
http://enos.readthedocs.io

Agenda

1. Introduction (Discovery, FEMDC SIG)

2. OpenStack Performance Evaluations

3. EnOS: Experimental eNvironment for OpenStack

4. Overview of the Works Done with EnOS

5. Future Works and Conclusions

3

1. Introduction
4

Discovery initiative
Study Fog/Edge infrastructure:

 • New form of Cloud infrastructure

 • Many micro to nano data-centers (dozen of compute nodes)

 • Micro/Nano data-centers must cooperate to provide Cloud Computing features

Motivations:

 • Points of Presence (PoP) hold servers and routers at the edge of the network

 • Deploy micro/nano DCs at PoPs

 ⇒ Massively distributed cloud at the edge of the network

5

Such infra offers a new paradigm: Fog/Edge computing
 • Reliable – No single point of failure
 • Governance – Capability to request an compute node in an australian PoP
 • Reduces end-user to compute node latency – For latency-sensitive apps:

◦ Internet of Things
◦ Smart cars
◦ Tactile Internet
◦ NFV (telco)
◦ ...

Discovery initiative (cont’d)

6

Discovery initiative (cont’d)

7

Infrastructure (Renater backbone):
 • A red point is a Point of Presence (PoP)
 • A micro data center in each PoP
 • PoPs collaborate to offer Cloud
 Computing functionalities

Question: How to Operate such a
Massively Distributed Cloud
Infrastructure?

Fog/Edge/Massively Distributed Clouds
(FEMDC) SIG
● Investigate how OpenStack can address Fog/Edge Computing use-cases

● On-going actions:

○ Executive summary of Fog/Edge computing

○ Use-cases: talk given by Paul-André yesterday

○ Evaluate critical services for massively distributed OpenStack deployments

○ Evaluate architectural choices

○ …

● We had our F2F meeting on Monday (check our pad or wiki)

8

https://www.openstack.org/summit/sydney-2017/summit-schedule/events/20082
https://www.openstack.org/summit/sydney-2017/summit-schedule/events/19510
https://etherpad.openstack.org/p/FEMDC-F2F-meeting-sydney-summit
https://wiki.openstack.org/wiki/Fog_Edge_Massively_Distributed_Clouds

Investigate OpenStack in Fog/Edge
Centralized OpenStack services (e.g. database,

message bus) can be potential bottlenecks:

Several deployment possibilities:

1. Control services deployed at one site,

many compute nodes on remote sites

2. Segregation technics

○ Cells (nova related)

○ Multi-regions (shared keystone)

3. Federated/brokering approaches

 * vCPE: virtual Customer Premises Equipment 9

Master
Site

vCPE vCPE vCPE

 vCPE
 vCPE

WAN Links

 Region 1 Region 2

Region n

Investigate OpenStack in Fog/Edge
How to evaluate critical services in Fog/Edge context?

Which type of deployment is the most interesting/appropriate?

⇒ We need a sandbox to help us conducting various performance analyses

10

2. OpenStack
performance evaluations

11

What is performance evaluation?
● Performance evaluations of a system

○ Set the system in a controlled and well-defined environment
○ Collect metrics and logs of the system in real-time and analyze them

■ Hardware metrics (e.g. CPU, RAM, network, disk consumption)
■ Service metrics (e.g. number of services requests, number of messages in queues)

○ When a specific and appropriate workload is applied on the system
■ “Don’t expect to measure significant network activity from writing bytes on local disk”

● Control-plane vs Data-plane evaluations
○ Control-plane: evaluation at the level of OpenStack controllers

■ e.g. database, message queue, API services, ...
○ Data-plane: evaluation at the level of the components managed by OpenStack

■ e.g. compute instances, network, storage performances

12

Why perf evaluations for OpenStack?
● Configuration validation wrt some performance metrics

○ Find system bottlenecks in a specific context
■ e.g. investigating OpenStack in Fog/Edge infrastructures

○ Help to make the good design choices (e.g. how to deploy OpenStack services)
○ Find out appropriate settings for deployed services

● Continuous benchmarking (non-regression in the context of performance)
○ Help developers to validate new features

⇒ Validation needs performance experimentations to be reproducible by others

13

Performance WG
● For OpenStack, the Performance WG is in charge of defining and sharing the

performance evaluation methodologies

● Share data about realized performance tests and results:
○ Methodologies
○ Labs/testbeds
○ Test plans
○ Test results

● Develop performance analysis tools
○ osprofiler: OpenStack profiling library
○ osfault: OpenStack fault-injection library

14

https://docs.openstack.org/performance-docs/latest/index.html

Challenges
1. Hard to compare different deployments

a. Express different OpenStack configurations (e.g. release, enabled services, settings)
b. Manage different configurations, and switch between them

■ “Compare vanilla OpenStack vs OpenStack with customized version of Nova”
■ “Compare vanilla Neutron vs Neutron when a specific plugin is activated”

2. Hard to reproduce or re-use experimental environments
a. Express a specific environment (e.g. set network constraints between nodes)
b. Switch from a testbed to another one

■ “Reproduce automatically an experimental environment made in testbedA on testbedB”

3. Hard to deploy an operable OpenStack
a. Everybody is not devops (e.g. most academics are not)

■ “Deploy automatically an OpenStack, even if I don’t know what it is”

15

Challenges (cont’d)

16

4. Hard to run benchmarks:
a. Different types of benchmark (control/data-plane)
b. Express complex benchmarking scenarios
c. Run automatically benchmarks

5. Hard to collect and explore the results:
d. Many types of generated data: logs, config files, metrics
e. Many services: monitoring, data stores and data visualization
f. Collect metrics from many nodes

⇒ We look for software-defined benchmarks and experimentation automation

3. Experimental
eNvironment for
OpenStack (EnOS)

17

EnOS: Experimental Env. for OpenStack

● Motivation: Conducting performance analyses
○ In a scientific and reproducible manner (automation)
○ For different testbeds (small, large-scale)
○ Under different network topologies (traffic shaping)
○ Between different OpenStack releases and configurations
○ With any kind of benchmarks

⇒ We talk about ephemeral perf-oriented deployments: not for production

● Built on Kolla: OpenStack deployment tool leveraging Docker and Ansible

○ Amazing work to build and deploy Openstack services as Docker containers
○ Ability to highly customize OpenStack deployment and service settings

18

1. $ enos deploy

● Read a deployment description file (topology + openstack configuration)
● Set an experimental environment (solve challenges 1 and 2)
● Deploy OpenStack (solve challenge 3)

2. $ enos bench

● Read a benchmark description file (test plan)
● Run benchmarks (solve challenge 4)

3. $ enos backup

● Backup confs, metrics and logs (solve challenge 5) for post-mortem analysis

EnOS Workflow

19

1. EnOS deploy: Topology Description

20

$ cat ./basic.yml
resources:
 clusterA:
 control: 1
 network: 1
 clusterB:
 compute: 50

$ enos deploy -f basic.yml

$ cat ./advanced.yml
resources:
 clusterA:
 control: 1
 network: 1
 nova-conductor: 5
 clusterB:
 compute: 50

$ enos deploy -f advanced.yml

$ cat ./network-topo.yml
resources:
 grp1:
 clusterA:
 control: 1
 network: 1
 nova-conductor: 5
 grp2:
 clusterB:
 compute: 50

network_constraints:
 - src: grp1
 dst: grp2
 delay: 100ms
 rate: 10Gbit
 loss: 0%
 symetric: true

$ enos deploy -f network-topo.yml

1. EnOS deploy: Under the hood

21

resources:
 grp1:
 clusterA:
 control: 1
 network: 1
 grp2:
 clusterB:
 compute: 50

network_constraints:
 delay: 100ms
 rate: 10Gbit
 loss: 0%

1. Provider gets 2 nodes on clusterA, 50 nodes on clusterB and
returns node's IP addresses

2. EnOS provisions nodes with Docker daemon (Kolla dependencies)
3. EnOS installs OpenStack using Kolla
4. EnOS sets up bare necessities (flavors, cirros image, router, …)
5. EnOS applies network constraints between grp1 and grp2 using tc

$ enos deploy

● Provider to get testbed resources
○ Resources: anything running a Docker daemon and EnOS can SSH to + some IPs
○ Existing providers: Vagrant (VBox/Libvirt), Grid’5000, Chameleon, OpenStack, Static
○ ~500 LoC each

● Kolla to deploy OpenStack over testbed resources

● TC to apply network constraints

2. EnOS bench

22

● Benchmarks description

$ cat ./run.yml

rally:
 args:
 concurrency: 5
 times: 100
 scenarios:
 - name: boot and list servers
 file: nova-boot-list-cc.yml
 osprofiler: true
 - …
shaker: ...

$ enos bench --workload=run.yml

● Under the hood
○ Rally: control plane benchmark
○ Shaker: data plane benchmark
○ OSProfiler: code profiling
○ Monitoring stack: cAdvisor/Collectd to

collect CPU/RAM/Network consumption
per service/node/cluster

3. EnOS backup

● enos backup produces a tarball with:
○ Rally/Shaker reports
○ OSProfiler traces
○ InfluxDB database with cAdvisor/Collectd measures
○ OpenStack logs

23

Further information: http://enos.readthedocs.io

http://enos.readthedocs.io

4. Overview of the jobs
done with EnOS

24

“Chasing 1000 nodes scale”

25

Presented at the OpenStack Summit in Barcelona (Newton, October 2016)

Goals: Find out how OpenStack behaves when deploying 1000 compute nodes

● Analysis of the control plane at scale

● Identify potential bottlenecks

● Identify:

○ Key service settings (e.g. number of service workers)

○ The influence of services topologies (e.g. service scalability)

https://www.youtube.com/watch?v=XURkQ3biF6w

“Chasing 1000 nodes scale”

26

Results:

● Some key services settings were identified

○ e.g. increase nova-conductor and neutron-server workers, max connections for database

● Identified some architectural requirements

○ e.g. one nova-scheduler for 100 compute nodes

How EnOS nailed it:

⇒ Leverage EnOS control-plane analysis to find out bottlenecks and impact of settings

⇒ Leverage EnOS flexibility to find the correct topology

Presented at the OpenStack Summit in Boston (Ocata, April 2017)

Goals:
● Investigate the latency impact on both control plane and data plane
● Validate results on two reconfigurable testbeds for experimentations:

 Grid’5000 Chameleon

● 100+ bare-metal nodes
27

“Evaluating OpenStack WAN-wide”

clusterA

delay

grp2

Compute node 1
Neutron L3

Compute node 10
Neutron L3

grp1

Keystone

Glance

Nova

Neutron

Horizon
Compute node 2

Neutron L3+

https://www.openstack.org/videos/boston-2017/toward-fog-edge-and-nfv-deployments-evaluating-openstack-wanwide

Results:
● Control plane: Latency impacts completion times

● Data plane: Latency highly impact inter-VM response time

○ Because VMs have to fetch routing information at Neutron server

○ Enabling Neutron Distributed Virtual Routing (DVR) feature solves it (one line to add in EnOS config file)

How EnOS nailed it:

 ⇒ Leverage EnOS control plane (rally), data plane (shaker) and profiling (osprofiler) benchmark tools

⇒ Leverage EnOS providers to validate the behavior of 250 benchmarks on two different testbeds

⇒ Leverage EnOS network constraints to simulate WAN-wide infrastructure

28

“Evaluating OpenStack WAN-wide”

FBK CREATE-NET (Trento, Italy)
● FEMDC active members

● OS and K8S for workload migration for Fog/Edge infra

● EnOS contributors

29

Fed4Fire+
● European project: federation of testbeds for research experimentations

● Benchmark comparison between OpenNebula and OpenStack

● EnOS contributors

5. Future works and
conclusions

30

31

Future works
Evaluation of critical OpenStack services in massively distributed context:

1. Message bus service (RabbitMQ, ZeroMQ, QPID):

● Ongoing work: Orange, RedHat and Inria
● Massively distributed RPC test plans available from Performance WG

 2. Database alternatives (MariaDB, newSQL):

● Ongoing work: Cockroach Labs (CockroachDB) and Inria
● Proof of concept with Keystone for now

⇒ Results expected to be presented for Vancouver Summit

https://review.openstack.org/#/c/491818/
http://lists.openstack.org/pipermail/openstack-dev/2017-September/121779.html

32

Take-away message
Experimental environments for conducting OpenStack performance analyses:
● Automate each step of the experimentation workflow:

○ set experimental environment
○ deploy highly customizable OpenStack configuration
○ run benchmarks
○ collect generated data for real-time and post-mortem analysis

● Software-defined approach: describe everything description files
○ topology
○ OpenStack tuning
○ benchmark scenarios

● Reproducibility: help to validate your evaluations
○ many providers available

33

Take-away message (cont’d)
EnOS has been and will be used for conducting rigorous experiments:
● Large-scale OpenStack
● WAN-wide OpenStack
● Critical services in massively distributed infrastructures (message bus, database)

You can easily reproduce and tune them on your own infrastructure:
● Use existing providers (Vagrant, OpenStack, …)

○ or create your own (~500 LoC)
● OpenStack tuning (reproduce on new releases, new service features)

34

Reproducible performance evaluations
of different OpenStack deployments

with EnOS
Fog/Edge/Massively Distributed Clouds Working Group

Beyond the Clouds - The Discovery initiative

Ronan-Alexandre Cherrueau, Dimitri Pertin, Anthony Simonet, Matthieu Simonin, Adrien Lebre

